
Evaluation of Memory Consistency 
Models in Titanium



Introduction

• What should be the correct ordering of memory 
operations?

• Uniprocessor:  follow the program order; read and writes 
to different locations can be reordered safely

• Multiprocessor:  correct semantics not clear; memory 
operations from different processors are not ordered

• Memory Consistency Models:  Impose restrictions on the 
ordering of shared memory accesses
— strict:  easy to program, but prevents many optimizations and 

generally thought to be slow
— relaxed: better performance, but hard to code



Sequential Consistency

• Definition [Lamport 79]:
— A system is sequentially consistent if the result of any execution is the 

same as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual processor 
appear in this sequence in the order specified by its program

• Enforce program ordering for single processor
• Memory accesses appear to execute atomically
• Few optimizations possible (no register allocation, write 

pipelining, etc)
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Write Write



Weak Ordering

• Relax all program order requirements
• Ordering is preserved only at synchronization points; 

read and write between barriers can be performed in 
any order

• Explicit sync instruction to maintain program order
• Eliminates almost all memory latencies, allows most 

reordering optimizations
• 2x over naïve SC implementation in some study
• Used by PowerPC

sync syncReordered read/write



Effects of consistency models on program 
understanding

P1
//initially A, B = 0
A = 1
If (B == 0) 

foo();

P2

B = 1
If (A == 0)

foo();

• SC:  Either P1 or P2(or neither) 
will call foo(), but not both
• WC: foo() may be called by both 
P1 and P2, because of WR 
reordering



Enforce SC Using the Compiler

• Compiler can hide the weak consistency model 
of the underlying machine by inserting barriers

• Gives more flexibility to programmers, can 
choose between simplicity and performance

• SC can be violated at two levels

• Software level: register allocation, code motion, 
common subexpression elimination, etc.

• Hardware level: memory access reordering, read 
bypass pending write, non-blocking reads, etc.



Enforcing SC in Titanium

• Titanium compiler:  disallow optimizations that could 
violate SC.
— Only one:  lifting of invariant exp out of loops

• GCC:  One-at-a-time approach by adding fence 
instructions between accesses to non-stack variables

• asm volatile ($fence : : : “memory”)
• Hardware:

— Pentium III:  $fence = locked instruction
— Power3:  $fence = sync instruction 

• Can do better if apply delay set analysis



Data Sharing Analysis

• If data is private, no need to enforce sequential 
consistency on memory operations

• Naïve:  fence on every memory access (e.g., C)
• Titanium SC:  distinguishes between stack (private) 

and heap (shared) data
• Titanium sharing inference:

—Late : no deference/assignment of global pointers to 
private data

—Early:  Shared data cannot transitively reach private 
data

—Late qualifies more variables to be private 



Experimental Setup

• Machine Description
— Millennium Node:  4-way Pentium III (PC model)
— Seaborg:  16-way IBM Power3 chips (WO model)

• Benchmarks:  Titanium Programs
— Pi:  Monte Carlo simulation
— Sample-sort: distributed sorting algorithm
— Cannon:  matrix multiplication
— 3d-fft:  3D fast-fourier transform
— Fish-grid:  n-body simulation
— Pps:  poisson solver for uniform grid
— Amr:  poisson solver on an adaptive mesh



Running Time on Millennium Node

• 10% to 3x performance gap
• sharing analysis does not help except for small 
benchmarks

Running Time
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Performance Analysis

• Effect of Titanium compiler optimizations

• Effectiveness of sharing inference 

• Effects of GCC optimizations

• Effects of architecture reordering

• Hardware performance data



Effect of Titanium compiler 
optimizations

• Collect how many lifting operations were 
prevented by SC

• Turns out the restriction makes virtually no 
difference; only in pps, amr do we see 
expressions not lifted because of SC 
restriction (5, 6%)

• Running pps,amr with loop lifting constraint 
turned off yields similar performance ratio

• Makes sense intuitively since rarely do 
programmers leave an invariant assignment 
to shared variables in the loop 



Data Sharing Analysis

Running time with fence on every memory access
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• 2.5 to 14x performance gap between SC and weak
• Identifying stack data as private is very important in 
lowering the performance penalty of SC 



Effectiveness of Sharing Inference

Effectiveness of Sharing Inference
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• First bar is early, second is late enforcement 
• Effective for small benchmarks, not so for large ones



Effects of GCC optimization (on Mill 
Node)

Runtime with no GCC optimization
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• Done by disabling GCC optimizations
• no major decrease in performance gap



Effects of Architecture Reordering (on Mill 
Node)

• Compiler does not prevent processor from reordering memory 
operations
• Decrease in performance gap observed
• Means Performance penalty for SC is higher at hardware level

Running Time, no restriction on hardware optimization
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Number of Sync Instructions 
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Breakdown of Execution Time: Pi
(millions of cycles)

Breakdown of execution time -- pi
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• SC’s performance penalty mainly caused by increase in idle 
cycles(waiting for sync instructions to complete)



Conclusion

• Performance gaps exists between SC and relaxed 
models
— Size of gap is Highly dependent on the benchmarks
— In general, not very expensive

• Architecture reordering accounts for most of the 
performance difference;  Titanium and gcc optimization’s 
effect appear limited

• Sharing inference is not effective in reducing cost of SC
• At the hardware level 

— SC causes significant higher number of idle cycles, because of sync 
instructions


